Thru－Hole／Gull Wing Commercial： $0{ }^{\circ}$ to $70^{\circ} \mathrm{C}$ 10 MHz to 410 MHz

Generates complementary 5V ECLPS PECL output waveform optimized for low jitter for telecom applications．

FEATURES

－Super low jitter output－ 2 ps RMS typical
－Frequency range is $10-410 \mathrm{MHz}$
－Four stability choices to 20 ppm
－Start up time less than 5 ms
－Guaranteed start－up with ramping DC Supply
TYPICAL APPLICATIO NS
－High－speed data communications

Description

These 5 volt thru hole ECLPS PECL models feature jitter of 20 ps ，peak－to－ peak from positive edge to positive edge． This is accomplished by using AT－cut crystals operating in their fundamental or overtone modes．No frequency doubling， tripling or phase－lock－loop multipliers are used，ensuring the very lowest jitter sup－ ported by the ECLPS PECL logic．Two outputs support differential drive at 50 ohms each，assuring signal integrity even when transmitted over long paths．They are compatible，and produce the same waveshapes as our M2911 VCXOs．

They are available in the full size（M） package with or without gull wing． Four stability options are available from $\pm 100 \mathrm{ppm}$ thru $\pm 20 \mathrm{ppm}$ ．

ECLPS PECL 5V	
Model	Frequency Stability
M2910	$\pm 100 \mathrm{ppm}$
M2954	$\pm 25 \mathrm{ppm}$
M2955	$\pm 50 \mathrm{ppm}$
M2958	$\pm 20 \mathrm{ppm}$

CONNECTIONS
Pin 1．ECLPS PECL Output
Pin 7．Ground，Case
Pin 8．ECLPS PECL Output Complement Pin 14．$V_{D D}, 5 \mathrm{~V}$

ELECTRICAL SPECIFICATIONS

Frequency Range 10 MHz to 410 MHz
Frequency Stability Includes calibration at $25^{\circ} \mathrm{C}$ ，operating temperature， change of input voltage，change of load，shock and vibration．

	MIN	TYP	MAX	UNITS
Input Voltage， $\mathbf{V}_{\text {DD }}$	4.75	5.0	5.25	volts
Input Current，Maximum			70	ma

Output Levels，with Output returned to $\left(V_{D D}-2\right) V$ thru 50Ω

＂0＂Level		$\left(\mathrm{V}_{\mathrm{DD}^{-1.63}}\right)$	volts
＂1＂Level	$\left(\mathrm{V}_{\mathrm{DD}}-0.98\right)$		volts

Rise and Fall Times，with Output returned to（ $\mathrm{V}_{\mathrm{DD}}-2$ ）V thru 50Ω
225350 ps
（from 20 to 80\％）
Jitter，Positive Edge to Pos Edge，

RMS	2	3.5	ps
Peak to peak	14	20	ps
metry at $\left(V_{D D}-1.3\right) V$		$45 / 55$	percent

Symmetry at（ $\mathrm{V}_{\mathrm{DD}}{ }^{-1.3) \mathrm{V}}$
ppm ppm／yr

ENVIRONMENTAL SPECIFICATIONS

Temperature

Operating	0° to $70^{\circ} \mathrm{C}$
Storage	-55° to $+125^{\circ} \mathrm{C}$

Shock－ 1000 Gs， $0.35 \mathrm{~ms}, 1 / 2$ sine wave， 3 shocks in each plane Vibration－10－2000 Hz of .06 ＂d．a．or 20 Gs ，whichever is less
Humidity－Resistant to 85° R．H．at $85^{\circ} \mathrm{C}$

MECHANICAL SPECIFICATIO NS

Leak－MIL STD 883，Method 1014，condition A1
Pins－Kovar，nickel plated with $60 / 40$ solder coat
Bend Test－Will withstand two bends of 90° from reference
Header－Steel，with nickel plate
Case－Stainless steel，type 304
Marking－Epoxy ink or laser engraved
Resistance to Solvents－MIL STD 202，Method 215
Termination，Load
Both outputs should be terminated with 50 ohms to（ $\mathrm{V}_{\mathrm{DD}}-2$ ）volts

TEST CIRCUIT FOR M2910，M2954，M2955，M2958
Fig． 4 Test Circuit

HOW TO ORDER

For Part Number，put package type before model number， and add frequency in MHz ，for example：

SS\＃	Rev．
M2910	A

ELECTRONICS

